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GPT - Generative Pre-Training Transformer: Big Picture

Model |Title Focus Paradigm Params
GPT-1 Improving Language NLU tasks, pre-trained | Pre-training->Efficient Fine- | 117M
Understanding by model tuning
Generative Pre-Training
GPT-2 Language Models are Zero-shot Evaluation, | Pre-training->Zero-shot 1.5B
Unsupervised Multitask | NLG Tasks Multitask Transfer
Learners
GPT-3 Language Models are Few-shot Learning or | In-context Learning with a 175B
Few-Shot Learners In-context Learning few demonstration
examples
GPT- N/A NLG with human Pre-training->RLHF 175B + 6B
3.5/ patterns reward
ChatGPT model




GPT1: Generative Pre-Training for NLU

* GPT is out before BERT.

Model GPT BERT/RoBERTa

Type Autoregressive Language Model Autoencoding Language Model

Training Causal Language Modeling Masked Language Modeling, (Next Sentence
Objectives Prediction)

Paradigm Pre-training to Discriminative Fine- | Pre-training to Span-based Fine-tuning

Tuning with Auxiliary LM

Evaluation Tasks

NLU (GLUE),

NLU (GLUE), Short-Answer QA (Squad), NER,
SWAG




AE Encoder/AR Decoder/Prefix-LM

Pre-training models has been a hot topic in the research of NLP. Since 2018, with the emergence of BERT,
it has gained great attention from both the academy and the industry. The recent published PTMs can be
classified into three types: BERT variants (XLNet, ROBERT, BART, TinyBERT etc.), task-oriented PTM
(PLATO), and Cross-lingual PTM (NEZHA, FILTER).
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Figure 3: Matrices representing different attention mask patterns. The input and output
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Unsupervised Pre-training

Training Objective: Causal Language Modeling
Maximize the likelihood on the text corpus:

Given an unsupervised corpus of tokens U/ = {uy,...,u,}, we use a standard language modeling
objective to maximize the following likelihood:
Ly(U) =) log P(ulti_p, ..., ui—1;0) (1)

where k 1s the size of the context window, and the conditional probability P is modeled using a neural
network with parameters ©. These parameters are trained using stochastic gradient descent [51].

ho =UW, + W,
h; = transformer_block(h;_1)Vi € [1,n)] (2)
P(u) = softmax(h, W)
where U = (u_g,...,u_1) is the context vector of tokens, n is the number of layers, W, is the token

embedding matrix, and W, is the position embedding matrix.



Discriminative Fine-tuning

For labeled downstream task, maximize the log probability on each pair of
Instance (X, y)

After training the model with the objective in Eq. 1, we adapt the parameters to the supervised target

task. We assume a labeled dataset C, where each instance consists of a sequence of input tokens,

xt, ..., x™, along with a label y. The inputs are passed through our pre-trained model to obtain

the final transformer block’s activation A}, which is then fed into an added linear output layer with
parameters W, to predict y:

P(y|lz',...,2™) = softmax(h]"W,,). 3)

This gives us the following objective to maximize:

Ls(C) = Z log P(y|x?, ™). (4)

(,y)

Add auxiliary fine-tuning objective of language modeling will imporove the
performance L3(C) = L,(C) + 1 * L;(C)



Discriminative Fine-tuning
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Figure 1: (left) Transformer architecture and training objectives used in this work.

Classification

Multiple Choice
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(right) Input

transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.



Results on Natural Language Understanding

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B  MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 35k 2.5k ;
Pre-OpenAl SOTA 80.6/30.1 66.1 823 93.2 35.0 81.0 86.0  61.7 74.0
BiLSTM+ELMo+Attn  76.4/76.1 64.8  79.8 90.4 36.0 73.3 849 568 71.0
OpenAl GPT 82.1/81.4 70.3 874 91.3 45.4 80.0 823  56.0 75.1
BERTgASE 84.6/83.4 712 905 93.5 52.1 85.8 889  66.4 79.6
BERTL ArGE 86.7/85.9 721 927 94.9 60.5 86.5 89.3  70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.® BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.



Results on Natural Language Understanding

Table 4: Semantic similarity and classification results, comparing our model with current state-of-the-
art methods. All task evaluations in this table were done using the GLUE benchmark. (mc= Mathews
correlation, acc=Accuracy, pc=Pearson correlation)

Method Classification Semantic Similarity GLUE

CoLA SST2 MRPC STSB QQP
(mc¢) (acc)  (F1) (pc)  (FI)

Sparse byte mLSTM [16] - 93.2 - - _ i}
TF-KLD [23] - - 86.0 - ; }
ECNU (mixed ensemble) [60] - - - 81.0 . ;

Single-task BILSTM + ELMo + Attn [64] 35.0 902 802 555 66.1 6458
Multi-task BILSTM + ELMo + Attn [64] 189 916 835 728 633  68.9

Finetuned Transformer LM (ours) 45.4 91.3 82.3 82.0 703 72.8




/ero-shot Behaviors

Relative Task Performance

1.0
- sentiment analysis
winograd schema resolution
- |Inguistic acceptability
0.8 { == question answering
—— Transformer
LSTM
0.6
0.4+
0.2 1
0.0 + ‘
107 104 10° 106

# of pre-training updates

The performance is normalized
between the random guess
baseline and SOTA model.

In the first time, GPT-2 proved
the positive correlation between
pre-training steps and zero-shot
performance.

Therefore, do not stop pre-
training! And GPT-2 is on its

way.
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GPT-2:

Transferring from NLU to NLG, which is more complicated.

Fully zero-shot evaluation, without any task-specific fine-tuning.

Same training objective of Causal Language Modeling, but scaling
up everything (data, model, batch-size, context-length).

Achieved SOTA on most of NLG dataset compared with tuned
model.




GPT-2: Language Modeling Benchamarks

LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB enwik8 text§ WikiText103 IBW

(PPL) (ACC) (ACC) (ACC) (PPL) (PPL) (BPB)  (BPC) (PPL) (PPL)
SOTA 99.8 59.23 85.7 82.3 39.14 46.54 099 1.08 18.3 21.8
117M 35.13 45.99 87.65 83.4 29.41 65.85 1.16 1.17 37.50 75.20
345M 15.60 55.48 92.35 87.1 22.76 47.33 1.01 1.06 26.37 55.72
762M 10.87 60.12 93.45 88.0 19.93 40.31 0.97 1.02 22.05 44.575
1542M 8.63 63.24 93.30 89.05 18.34 35.76  0.93 0.98 17.48 42.16

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and WikiText-2
results are from (Gong et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang et al., 2018)
and LAMBADA perplexity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019).
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GPT-2: RC, Translation, SUM, QA

Reading Comprehension Translation Summarization . Question Answering
90 {Human 55 |Unsupervised Statistical MT 32 {Lead-3
80 - : 301 8 1 1 Open Domain QA Systems T 1|
20 1 o 28_PGNet
70 1 L
DrQA+PGNet . S 261 > 61
5 15 {Denoising + Backtranslate o) o
—~ 60 m 4 5
w DrOA = - 24 {Seq2seq + Attn o N
50 A 10 {Embed Nearest Neighbor 8 22+ <
PGNet " © Random-3
Denoising T 20 -
40 1 5 | é 2
| 181 most freq Q-type answer
30
Seq2seq 0 16 0
117M 345M 762M  1542M 117M 345M 762M  1542M117M 345M 762M  1542M 117M 345M 762M  1542M
# of parameters in LM # of parameters in LM # of parameters in LM # of parameters in LM

Figure 1. Zero-shot task performance of WebText LMs as a function of model size on many NLP tasks. Reading Comprehension results
are on CoQA (Reddy et al., 2018), translation on WMT-14 Fr-En (Artetxe et al., 2017), summarization on CNN and Daily Mail (See et al.,
2017), and Question Answering on Natural Questions (Kwiatkowski et al., 2019). Section 3 contains detailed descriptions of each result.
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Large-Scale Data and Under-fitting

16 1

Perplexity
= - =
o N ~

(o]
1

—8— WebText train
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117M

Figure 4. The performance of LMs trained on WebText as a func-

tion of model size.

345M 762M 1542M
# of parameters in LM

Even with the increase of model parameters
to 1.5B, the training dataset of WebText
1542M is still under fitting.

Therefore, the model can still be scaled
up to better fit on the training dataset.

GPT-3 is on the way! A new era started!
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GPT-3: What Is In-context learning?

Three ways of in-context learning:

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer example
cheese => prompt

In a single sequence input, the
prompted example can learn from
previous demonstrations.

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivreée

plush girafe => girafe peluche

cheese => prompt

15



GPT-3: What 1s LM capable of in-context learning?

outer loop

Learning via SGD during unsupervised pre-training

WV

5 5 5
1
5+ 8 =13 8 gaot => goat 8 thanks => merci 8
= =3 =
(= — (=
7+2=09 o sakne => snake @ hello => bonjour o
~ ~ Ll
o ™ o
) 1+8 =1 o brid => bird '] mint => menthe Y
inner loop 5 3 5
=] 5 =]
3+4=7 (=] fsih => fish [=] wall => mur Qa
549 =14 dcuk => duck otter => loutre
9 +8 =17 cmihp == chimp bread => pain
N N N
sequence #1 sequence #2 sequence #3

Figure 1.1: Language model meta-learning. During unsupervised pre-training, a language model develops a broad
set of skills and pattern recognition abilities. It then uses these abilities at inference time to rapidly adapt to or recognize
the desired task. We use the term “in-context learning” to describe the inner loop of this process, which occurs within
the forward-pass upon each sequence. The sequences in this diagram are not intended to be representative of the data a
model would see during pre-training, but are intended to show that there are sometimes repeated sub-tasks embedded
within a single sequence.



GPT-3 Results: NLU of SuperGLUE

SuperGLUE Performance In-Context Learning on SuperGLUE
—8— Zero-shot Few-shot GPT-3 175B
Human Human
Fine-tuned SOTA —@— One-shot Fine-tuned SOTA

Few-shot (K=32)

80 80
g
E Fine-tuned BERT++ Fine-tuned BERT ++
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2
Q
S
& 60 60
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Figure 3.8: Performance on SuperGLUE increases with model size and number of examples in context. A value
of K' = 32 means that our model was shown 32 examples per task, for 256 examples total divided across the 8 tasks in
SuperGLUE. We report GPT-3 values on the dev set, so our numbers are not directly comparable to the dotted reference
lines (our test set results are in Table 3.8). The BERT-Large reference model was fine-tuned on the SuperGLUE training
set (125K examples), whereas BERT++ was first fine-tuned on MultiNLI (392K examples) and SWAG (113K examples)
before further fine-tuning on the SuperGLUE training set (for a total of 630K fine-tuning examples). We find the
difference in performance between the BERT-Large and BERT++ to be roughly equivalent to the difference between
GPT-3 with one example per context versus eight examples per context.
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GPT-3 Results: Language Modeling

LAMBADA LAMBADA StoryCloze HellaSwag

Setting (acc) (ppl) (acc) (acc)
SOTA 68.0¢ 8.63° 91.8¢ 85.64
GPT-3 Zero-Shot 76.2 3.00 83.2 78.9
GPT-3 One-Shot 72.5 3.35 84.7 78.1
GPT-3 Few-Shot 86.4 1.92 87.7 79.3

Table 3.2: Performance on cloze and completion tasks. GPT-3 significantly improves SOTA on LAMBADA while
achieving respectable performance on two difficult completion prediction datasets. “[Tur20] PIRWC19] ¢[LDL19]
d +

[LCH ™ 20]
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GPT-3 Results: Open-Domain QA

Setting NaturalQS WebQS TriviaQA
RAG (Fine-tuned, Open-Domain) [LPP20] 44.5 45.5 68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20] 36.6 44.7 60.5
T5-11B (Fine-tuned, Closed-Book) 34.5 37.4 50.1
GPT-3 Zero-Shot 14.6 14.4 64.3
GPT-3 One-Shot 23.0 25.3 68.0
GPT-3 Few-Shot 29.9 41.5 71.2

Table 3.3: Results on three Open-Domain QA tasks. GPT-3 is shown in the few-, one-, and zero-shot settings, as
compared to prior SOTA results for closed book and open domain settings. TriviaQA few-shot result is evaluated on the
wiki split test server.
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GPT-3 Results: Machine Translation

Setting En—Fr Fr—En En—De De—En En—Ro Ro—En
SOTA (Supervised)  45.6° 35.0° 41.2¢ 40.2¢ 38.5°¢ 39.9¢
XLM [LC19] 33.4 33.3 26.4 34.3 33.3 31.8
MASS [STQ™ 19] 37.5 34.9 28.3 35.2 35.2 33.1
mBART [LGG20] - - 29.8 34.0 35.0 30.5
GPT-3 Zero-Shot 25.2 21.2 24.6 27.2 14.1 19.9
GPT-3 One-Shot 28.3 33.7 26.2 30.4 20.6 38.6
GPT-3 Few-Shot 32.6 39.2 29.7 40.6 21.0 39.5

Table 3.4: Few-shot GPT-3 outperforms previous unsupervised NMT work by 5 BLEU when translating
into English reflecting its strength as an English LM. We report BLEU scores on the WMT’ 14 Fr«En,
WMT’16 De<»En, and WMT’ 16 Ro<+En datasets as measured by multi-bleu.perl with XLM’s tokeniza-
tion in order to compare most closely with prior unsupervised NMT work. SacreBLEU' [Pos18] results re-
ported in Appendix H. Underline indicates an unsupervised or few-shot SOTA, bold indicates supervised SOTA
with relative confidence. ¢[EOAGI18] ?[DHKHI14] <[WXH'18] 9[oR16] ¢[LGG20] /[SacreBLEU signature:
BLEU+case.mixed+numrefs. 1 +smooth.exp+tok.intl+version.1.2.20]
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GPT-3 Results: Reading Comprehension

Setting CoQA DROP QuAC SQuADv2 RACE-h RACE-m
Fine-tuned SOTA 90.7¢ 89.1> 744 93.0¢ 90.0°¢ 93.1¢
GPT-3 Zero-Shot  81.5 23.6 41.5 59.5 45.5 58.4
GPT-3 One-Shot  84.0 34.3 43.3 65.4 45.9 57.4
GPT-3 Few-Shot  85.0 36.5 44.3 69.8 46.8 58.1

Table 3.7: Results on reading comprehension tasks. All scores are F1 except results for RACE which report accuracy.
“[JZCT19] P[IN20] €[AT119] [QIA20] ¢[SPPT19]
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GPT-3 Results: Arithmetic

Setting 2D+ 2D- 3D+ 3D- 4D+ 4D- 5D+ 5D- 2Dx 1DC

GPT-3 Zero-shot 769 58.0 342 483 40 75 07 08 198 938
GPT-3 One-shot 99.6 864 655 787 140 140 35 38 274 143
GPT-3 Few-shot 100.0 989 804 942 255 268 93 99 202 213

Table 3.9: Results on basic arithmetic tasks for GPT-3 175B. {2,3,4,5}D{+,-} is 2, 3, 4, and 5 digit addition or
subtraction, 2Dx is 2 digit multiplication. 1DC is 1 digit composite operations. Results become progressively stronger
moving from the zero-shot to one-shot to few-shot setting, but even the zero-shot shows significant arithmetic abilities.
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GPT-3 Results: Turing Test

Human ability to detect model generated news articles

control (86%)

80 +——F———=

Accuracy (%)

le8 1le9 1lel0 lell
Number of parameters (log scale)

Figure 3.13: People’s ability to identify whether news articles are model-generated (measured by the ratio of correct
assignments to non-neutral assignments) decreases as model size increases. Accuracy on the outputs on the deliberately-
bad control model (an unconditioned GPT-3 Small model with higher output randomness) is indicated with the dashed

line at the top, and the random chance (50%) is indicated with the dashed line at the bottom. Line of best fit is a power
law with 95% confidence intervals.
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Key to Success: Data Resources

Model |Pre-training Data Size
GPT-1 BooksCorpus (7000 books) 5GB
BERT BooksCorpus, En-Wikipedia 16GB
GPT-2 WebText 40GB
RoBERTa | BooksCorpus, CC-News, OpenWebText(WebText), Stories 160GB
GPT-3 CC(Common Crawl), WebText2, Books1, Books2, Wikipedia ~700GB
GPT-J Pile Corpus 800GB




Key to Success: Data Resources

Quantity Weight in Epochs elapsed when

Dataset (tokens)  training mix training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Booksl 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 3.4

Table 2.2: Datasets used to train GPT-3. “Weight in training mix” refers to the fraction of examples during training
that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a
result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets

are seen less than once.



Key to Success: Scaling Up

Total Compute Used During Training

10000 -

1000

100

Training Petaflop/s-days

10

Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models
[KMH™20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B
1s almost 10x larger than RoBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute
during pre-training. Methodology for these calculations can be found in Appendix D.



Key to Success: Scaling Up

Model Name Nparams  Mlayers OGmodel Mheads @head DBatch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 1074
GPT-3 Large 760M 24 1536 16 926 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 1M 2.0x 10~
GPT-3 2.7B 2.7B 32 2560 32 80 IM 1.6 x 1074
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x 10~4
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 1074
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 1074

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 billion tokens.



Key to Success

 Conclude, Summarize, and Find emerging phenomena from systematical

experiments:
* in GPT-1, the experiment of the relation between #updates and zero-shot performance;
* in GPT-2, the experiment of the relation between #params and training set ppl

* Insist on Simple yet Effective Architecture

 Keep on collecting high-quality web-crawled data



InstructGPT: Training language models to follow instructions
with human feedback

Step 1: Collect demonstration data, and train a supervised policy. Our labelers provide demon-
strations of the desired behavior on the input prompt distribution (see Section 3.2 for details on this
distribution). We then fine-tune a pretrained GPT-3 model on this data using supervised learning.

Step 2: Collect comparison data, and train a reward model. We collect a dataset of comparisons
between model outputs, where labelers indicate which output they prefer for a given input. We then
train a reward model to predict the human-preferred output.

Step 3: Optimize a policy against the reward model using PPO. We use the output of the
RM as a scalar reward. We fine-tune the supervised policy to optimize this reward using the PPO
algorithm (Schulman et al., 2017).



InstructGPT

Step1

Collect demonstration data,
and train a supervised policy.

A promptis
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tothe moon.. A labeler ranks
+ the OUtpUtS from @ Once upon a time...
, . best to worst.
This datais used = 0-0-0-0
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Step 3
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the reward model using
reinforcement learning.

A new prompt

Figure 2: A diagram illustrating the three steps of our method: (1) supervised fine-tuning (SFT), (2)
reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO)
on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2,
boxes A-D are samples from our models that get ranked by labelers. See Section 3 for more details
on our method.



InstructGPT: Reward Model

Specifically, the loss function for the reward model is:

1
loss (9) = _TE(wij’yE)mD []Og (0 (TG (357 yw) — T (ZU, yl)))] (1)

()

where r4(x, y) is the scalar output of the reward model for prompt x and completion y with parameters
0, Y. 1s the preferred completion out of the pair of y,, and y;, and D is the dataset of human

comparisons.



InstructGPT: PPO

We also experiment with mixing the pretraining gradients into the PPO gradients, in order to fix the
performance regressions on public NLP datasets. We call these models “PPO-ptx.” We maximize the
following combined objective function in RL training:

objective (¢) :E(a;}y)wpﬂgL [Te(éb“,y) — [Blog (WE'L(?J | 33)/7TSFT(ZU | $))] +

RL (2)
7E:B~Dpretrain [log(ﬂ_qb (35))]

where W?L is the learned RL policy, 771 is the supervised trained model, and Dpyetrain is the

pretraining distribution. The KL reward coefficient, 3, and the pretraining loss coefficient, v, control
the strength of the KL penalty and pretraining gradients respectively. For "PPO" models, - is set to 0.
Unless otherwise specified, in this paper InstructGPT refers to the PPO-ptx models.



Results
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Figure 1: Human evaluations of various models on our API prompt distribution, evaluated by how
often outputs from each model were preferred to those from the 175B SFT model. Our InstructGPT
models (PPO-ptx) as well as its variant trained without pretraining mix (PPO) significantly outperform
the GPT-3 baselines (GPT, GPT prompted); outputs from our 1.3B PPO-ptx model are preferred to
those from the 175B GPT-3. Error bars throughout the paper are 95% confidence intervals.



Results
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Figure 3: Preference results of our models, measured by winrate against the 175B SFT model. Left:
results on prompts submitted to GPT models on the API; Right: results on prompts submitted to
InstructGPT models on the API; Top: results from held-out labelers; Bottom: results from training
labelers. We omit GPT (prompted) from the evals on prompts submitted to GPT-3 models (left) as
these prompts are already designed to perform well for GPT-3, as opposed to prompts submitted to
InstructGPT models (right).



Usage

l Large-scale language model pretraining
Training on code

'lr_ GPT-3 Initial _l Instruction tuning

GPT-3 Series Codex Initial InstructGPT Initial
v |
4 l LM + code training then instruction tuning
GPT-3.5 Series l Supervised instruction tuning

RLHF 17 _l RLHF
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