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Vision, Language, Vision-Language Tasks

Corpus |Train| |Test| Task Metrics Domain
Single-Sentence Tasks
CoLA 8.5k 1k  acceptability Matthews corr. misc.
SST-2 67k 1.8k  sentiment acc. movie reviews
Similarity and Paraphrase Tasks
MRPC 3.7k 1.7k paraphrase acc./F1 news
STS-B Tk 1.4k  sentence similarity  Pearson/Spearman corr. misc.
QQP 364k 391k paraphrase acc./F1 social QA questions
Inference Tasks
MNLI 393k 20k NLI matched acc./mismatched acc.  misc.
QNLI 105k 5.4k QA/NLI acc. Wikipedia
RTE 2.5k 3k NLI acc. news, Wikipedia
WNLI 634 146  coreference/NLI acc. fiction books

Table 1: Task descriptions and statistics. All tasks are single sentence or sentence pair classification,
except STS-B, which is a regression task. MNLI has three classes; all other classification tasks have
two. Test sets shown in bold use labels that have never been made public in any form.



Vision, Language, Vision-Language Tasks

Category Task Dataset Metric Previous SOTA BEIT-3
Semantic Segmentation ADE20K mloU 61.4 (FD-SwinV2) 62.8 (+1.4)

Vision Object Detection COCO AP 63.3 (DINO) 63.7 (+0.4)
Instance Segmentation ~ COCO AP 54.7 (Mask DINO) 54.8 (+0.1)
Image Classification ImageNett  Top-1acc. 89.0 (FD-CLIP) 89.6 (+0.6)
Visual Reasoning NLVR2 Acc. 87.0 (CoCa) 92.6 (+5.6)
Visual QA VQAvV2 VQA acc. 82.3 (CoCa) 84.0 (+1.7)

Vision-Language " - ¢ Captioning COCOf  CIDEr 1453 (OFA) 147.6 (+2.3)
Finewned Rerieval — prioe ROL gyemocd g2 ino
Zero-shot Retrieval Flickr30K R@1 86.5 (CoCa) 88.2 (+1.7)

Table 1: Overview of BEIT-3 results on various vision and vision-language benchmarks. We compare
with previous state-of-the-art models, including FD-SwinV2 [WHX " 22], DINO [ZLL"22], Mask
DINO [ZLL"22], FD-CLIP [WHX"22], CoCa [YWV22], OFA [WYM"22], Florence [YCC™21].
We report the average of top-1 image-to-text and text-to-image results for retrieval tasks. “{” indicates
ImageNet results only using publicly accessible resources. “i” indicates image captioning results
without CIDEr optimization.



Connecting Images and Texts

e Pathway 1: task-agnostic joint representations of image and text
 Two-Stream model: VL-BERT
e One-Stream model: OSCAR
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Figure 1: Our VILBERT model consists of two parallel streams for visual (green) and linguistic
(purple) processing that interact through novel co-attentional transformer layers. This structure allows
for variable depths for each modality and enables sparse interaction through co-attention. Dashed
boxes with multiplier subscripts denote repeated blocks of layers.

* Pathway 2: contrastive learning
e CLIP
* ALIGN



CLIP: Connecting Images and Texts

* VILBERT: Connecting Regions of Patches with Tokens at different
length

e Data: Unsupervised, Supervised (ImageNet->JFT300M, LAION40OOM)
* CLIP: Connecting Sentences with Images

e Goal: Unifying Text and Image into one embedding space

* Architecture:
* Transformer Decoder for encoding text at sentence level
* ResNet/ViT for encoding image at image level
* Matching the multi-modal embedding space via simple dot-production



(1) Contrastive pre-training

Pepper the
aussie pup

Text

Encoder

NN

Image

(2) Create dataset classifier from label text

A photo of
a {object}.

Y

A4

A4

Encoder

]

A4

A4

Figure 1. Summary of our approach
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. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.



ResNet or Vision Transformer
text_encoder CBOW or Text Transformer

I[n, h, w, c] minibatch of aligned images
T[n, 1] - minibatch of aligned texts
W_i[d_1i, d_e] learned proj of image to embed
W_t[d_t, d_e] learned proj of text to embed
t - learned temperature parameter

image_encoder

HEFHRHFHFHRHH

xtract feature representations of each modality
image_encoder(I) #[n, d_i]
text_encoder(T) #[n, d_t]

=

e
f
f

oint multimodal embedding [n, d_e]
= 12_normalize(np.dot(I_f, W_i), axis=1)
= 12_normalize(np.dot(T_f, W_t), axis=1)

# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function

labels = np.arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=90)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2

Figure 3. Numpy-like pseudocode for the core of an implementa-
tion of CLIP.

Training Loss

* n : batch size
* | : sequence length
*d _i:image embedding dim

d e :text embedding dim
T f:output[:, -1, ]



CLIP: Training Detalils

* The short length image captions input with the limitation of 75 tokens
* Very large minibatch size of 32,768

* The largest ResNet model, RN50x64, took 18 days to train on 592
V100 GPUs

* The largest Vision Transformer took 12 days on 256 V100 GPUs

* ViT-L/14@336px (ViT-L/14 with higher 336pixel resolution) performs
best, denoted as CLIP later

* LAION dataset pre-training, the largest image-text pair dataset at that
time with 400M pairs. Now LAION comes to 5B



/ero-shot Comparison

aYahoo ImageNet SUN

Visual N-Grams 72.4 11.5 23.0
CLIP 98.4 76.2 58.5

Table 1. Comparing CLIP to prior zero-shot transfer image classi-
fication results. CLIP improves performance on all three datasets
by a large amount. This improvement reflects many differences
in the 4 years since the development of Visual N-Grams (Li et al.,
2017).

/ero-shot Obstacles for CV:
* Limited Size of ImageNet
* Feature to Inference



Results on 27 datasets
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Figure 5. Zero-shot CLIP is competitive with a fully super-
vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classifier outperforms a fully supervised linear classifier fitted on
ResNet-50 features on 16 datasets, including ImageNet.

Linear Probe baseline:

Pre-train ResNet-50 on
ImageNet

Throw away the last linear layer
mapping E to N_classes

-IX pre-train parameters

Fully supervised, regularized,
ogistic regression classifier
train on each downstream task
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Supervised Linear Probing Results

Linear probe average over Kornblith et al.'s 12 datasets Linear probe average over all 27 datasets
90 4 L/14@*3'36px L/14@336px
L/14, ... 85 1 Lia, K
RN50x64 RN50x64
.......... ol
12-800
2 $ 801
v v
8 R152x3 8
] (%]
P R152x4 o
o ViT-H/14 o
@ o
z res200x2 Z 75+
R152x4
70 1
MoCo-v2®
109 10! 102 10° 10! 102
Forward-pass GFLOPs/image Forward-pass GFLOPs/image

—#— CLIP-ViT Instagram-pretrained —— ViT (ImageNet-21k)

—= CLIP-ResNet —&— SimCLRv2 —— BiT-M

—— EfficientNet-NoisyStudent —r— BYOL —¥— BIT-S

—p— EfficientNet —e— MoCo ResNet

Figure 10. Linear probe performance of CLIP models in comparison with state-of-the-art computer vision models, including
EfficientNet (Tan & Le, 2019; Xie et al., 2020), MoCo (Chen et al., 2020d), Instagram-pretrained ResNeXt models (Mahajan et al., 2018;
Touvron et al., 2019), BiT (Kolesnikov et al., 2019), ViT (Dosovitskiy et al., 2020), SimCLRv2 (Chen et al., 2020c), BYOL (Grill et al.,
2020), and the original ResNet models (He et al., 2016b). (Left) Scores are averaged over 12 datasets studied by Kornblith et al. (2019).
(Right) Scores are averaged over 27 datasets that contain a wider variety of distributions. Dotted lines indicate models fine-tuned or
evaluated on images at a higher-resolution than pre-training. See Table 10 for individual scores and Figure 20 for plots for each dataset.



Supervised Linear Probing Results

% Linear probe average over Kornblith et al.'s 12 datasets

Linear probe average over 26 datasets
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Figure 12. CLIP’s features are more robust to task shift when compared to models pre-trained on ImageNet. For both dataset
splits, the transfer scores of linear probes trained on the representations of CLIP models are higher than other models with similar
ImageNet performance. This suggests that the representations of models trained on ImageNet are somewhat overfit to their task.
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Big Convergence of Vision and Language
Language Helps Vision:

Architecture Perspective: Vision Transformer->BEiT/Masked AutoEncoder
Pre-training Objective Perspective: MLM->Masked Image Modeling

Vision-Language Joint Modeling:
VLBERT, VisualBERT, CLIP, ALIGN

Big question: Can vision or visual knowledge help language?



Big Convergence of Vision and Language
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Figure 1. Overview of BEIT pre-training. Before pre-training, we learn an “image tokenizer” via
autoencoding-style reconstruction, where an image is tokenized into discrete visual tokens according
to the learned vocabulary. During pre-training, each image has two views, i.e., image patches, and
visual tokens. We randomlv mask some proportion of image patches (grav patches in the figure) and



Simple Questions Which Requires Visual Knowledge

What is the color of the sky?

|s sofa larger than a cat? g X

What is the shape of an apple?




Visually-Augmented Language Modeling

Motivation:
* Demonstrate that vision can also help language modeling
* Propose a novel area of Vision for NLP

Prerequisite:

* CLIP provides a good mapping between a sentence and an image

* LAION is constructed with 400M image-text pairs

* GPU-enabled Dense Retrieval with Inner Product Scoring is available



ValLM Architecture_
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Figure 1: Overview of visually-augmented language modeling (VALM). We conduct dense retrieval
to get top-k images for the input context at each time step. Then the visual knowledge fusion layer
attends to both text tokens and retrieved images. The vision-language fused representation is fed back
to Transformer for language modeling.
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Training Objective

Training Objective: Causal Language Modeling
Maximize the likelihood on the text corpus:

H' = Layer,(H'"'),l € [1,L]  HY' = VisualLayer({H 2, {zij} ;=1 }ict)
P(x;|x1, -+ ,%;_1) = softmax(WH?" + b)

We conduct generative unsupervised pre-training (Radford et al., 2019) for VALM on a large-scale
text corpus. The training objective of VALM is the standard left-to-right language modeling objective,
which maximizes the likelihood of the next word token based on the left context:

x|

maxz ZlogP(Xﬂxl,---  Xil1), (1)

xeD 1=1
where x represents a sentence randomly sampled from the large-scale pre-training text corpus D.
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Text-Image Retriever

Revisit: the text input length to CLIP text encoder is 75

Image Knowledge Base Creation:
Input each image in LAION to get a E-dim image encoding, Now we have
200M * IMG-E dimensional KB vector

Textual Query:
In order to map each token to K images, truncate the sentence with sliding
window

Nearest Neighbor Retrieval:
Retrieve the top-k images in KB given the token encoding query w.r.t. I[P score



Visual Knowledge Fusion Layer

the hidden state output for i-th token is h; and the corresponding retrieved images are {z;; };Cz 1, the

hidden state Hf_l is computed as:

Q=H'2W? +p9 K = H-2WE 405 vV = HF2WY +bY, 3)
ki = LNimg (zar) W5 + bisngs Vik = LNimg (i)W + bj.,, (4)
QKT exp (e;)
6?, - 70”6 - L K 3 (5)
Vd Zj:l exp (€ij) + 2y exp (eik)
ZkT exXp (e;
Cik = Q 1kaa”ik — C p( k))c ) (6)
Vd D=1 €xp (€ij) + D, exp (eik)
HY '=aV+) aunVik, (7)
k

where Q;, k. vi € RE, K,V € RIXIXE ¢ 4. € RI*I. The hidden state output from previous
layer HiL_1 is linearly projected into contextual queries, keys, and values Q, K, V separately. I is
the number of retrieved images for each token, and E is the embedding dimension for both context
and image representations. In order to generate image-specific attention keys and values, we adopt
image-specific bias b2 bY in linear projections and reuse the contextual projection weights

mg’ img
WHE WV to generate image-specific attention keys and values. Moreover, it is vital to mention
that the image-specific attention keys and values are distinct for each query token, which is highly

different from self-attention where the contextual keys and values are kept the same for each token.

A secondary subscript £ is used to denote different image representations for the i-th token.
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Training and Evaluation Detalls

Pre-trained Text corpus: CC-100, 400GB raw text

Image Data: LAION, half, 200M
Model Architecture: GPT2 Base, 117M

Evaluation Tasks:
* Visual- knowledge intensive tasks:

Task Example Prompt Object / Pair Answer
Object Color Reasoning  The color of [object]is [answer] the sky blue
Object Shape Reasoning  The shape of [object]is [answer] apple round
Object Size Reasoning Is [Tteml] larger than [Item?2]? [answer] (sofa, cat) Yes

Table 1: Evaluation examples of object color, shape, and size reasoning.

* Natural Language Processing Tasks
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Results on Visual-Knowledge Intensive Tasks

Model K Color (ACC?T) Shape (ACC?) Size (ACC?)
MEMORYCOLOR COLORTERMS OBJECTSHAPE RELATIVESIZE
GPT-2%* N/A 44.14% 39.10% 51.09% 47.22%
BERT N/A 24.34% 26.33% 31.86% 34.78%
CaptionBERT N/A 24.84% 28.40% 38.14% 66.05%
CLIP N/A 26.25% 23.08% 13.66% 47.99%
OSCAR N/A 20.32% 16.86% 33.14% 50.14%
Visual BERT N/A 26.68% 38.02% 11.14% 67.23%
VALM 4 53.99% 52.66% 62.77 % 85.03%
VALM 8 58.64 % 50.19% 59.41% 62.35%

Table 2: Accuracy on object commonsense reasoning datasets. GPT-2" is the re-implemented model
with identical pre-training data and hyper-parameter settings to VALM. K represents for the number
of images augmented to each token. Best performance 1s marked with bold.



Results on NLP tasks

SST-2 MPQA DBPedia AGNews
ACCT ACCt  ACCt ACC?

Majority N/A  50.90%  50.00% 9.4% 25.0%
GPT-2*  N/A 68.04% 71.25%  67.20% 53.51%

VALM 4 70.12%  78.710%  72.27% 53.81%
VALM 8 67.33% 77.35%  68.48% 59.77%

Model K

Table 4: Zero-shot evaluation results on natural language understanding tasks (SST-2, MPQA,
DBPedia, AGNews).

Wikitext-103 Lambada Lambada

Modd X PPL| PPL| ACC?t
GPT-2* N/A 36.44 42.46 42.17%
VALM 4 35.78 42.51 42.65%
VALM 8 35.76 42.38 42.87%

Table 5: Zero-shot evaluation results on language modeling tasks. We report perplexity (PPL) on
Wikitext-103 and Lambada and final word prediction accuracy (ACC) on Lambada.



Retrieval Cost

Image Color (ACCY) Shape (ACCYT) Size (ACCT) Timecost
Size MEMORYCOLOR COLORTERMS OBJECTSHAPE RELATIVESIZE (GPT2" as 1x)
200M 53.99% 52.66% 62.77% 85.03% 2.06x
100M 53.50% 49.71% 61.39% 81.84% 1.91x
10M 51.79% 47.49% 62.18% 82.15% 1.79x

1M 51.87% 46.31% 48.51% 82.35% 1.74x

Table 7: Accuracy on object commonsense reasoning datasets of VALM (KC = 4) with variants of

retrieval imageset size. K represents for the number of images augmented to each token.
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Case Study
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Figure 2: The attention matrix visualization given the query prompt “the color of [object] 1s” for
VALM. VALM achieves accurate image retrieval of top-4 images corresponding to the objects of sky
and parsley as augmented images, shown in the horizontal index of each subfigure.
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Case Study
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(a) Images for green apples in OBJECTCOLORIZATION dataset as replacements.
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(b) Probability Distribution Visualization for retrieved images and colorization images.

Figure 3: The visualization of the predicted probability distribution on 11 object color types with

retrieved images and colorization images, respectively. The adopted prompt for reasoning the object
color of an apple is “the color of [object] is”.
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