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Connecting Images and Texts

• Pathway 1: task-agnostic joint representations of image and text
• Two-Stream model: VL-BERT
• One-Stream model: OSCAR

• Pathway 2: contrastive learning
• CLIP
• ALIGN



CLIP: Connecting Images and Texts

• ViLBERT: Connecting Regions of Patches with Tokens at different 
length

• Data: Unsupervised, Supervised (ImageNet->JFT300M, LAION400M)
• CLIP: Connecting Sentences with Images

• Goal: Unifying Text and Image into one embedding space
• Architecture: 

• Transformer Decoder for encoding text at sentence level
• ResNet/ViT for encoding image at image level
• Matching the multi-modal embedding space via simple dot-production





Training Loss

• n : batch size
• l : sequence length
• d_i : image embedding dim
• d_e : text embedding dim
• T_f : output[:, -1, :]



CLIP: Training Details

• The short length image captions input with the limitation of 75 tokens
• Very large minibatch size of 32,768
• The largest ResNet model, RN50x64, took 18 days to train on 592 

V100 GPUs 
• The largest Vision Transformer took 12 days on 256 V100 GPUs
• ViT-L/14@336px (ViT-L/14 with higher 336pixel resolution) performs 

best, denoted as CLIP later
• LAION dataset pre-training, the largest image-text pair dataset at that 

time with 400M pairs. Now LAION comes to 5B



Zero-shot Comparison
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Zero-shot Obstacles for CV:
• Limited Size of ImageNet
• Feature to Inference



Results on 27 datasets
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Linear Probe baseline:
• Pre-train ResNet-50 on 

ImageNet
• Throw away the last linear layer 

mapping E to N_classes
• Fix pre-train parameters
• Fully supervised, regularized, 

logistic regression classifier 
train on each downstream task



Supervised Linear Probing Results
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Supervised Linear Probing Results
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Big Convergence of Vision and Language

Language Helps Vision:
Architecture Perspective: Vision Transformer->BEiT/Masked AutoEncoder
Pre-training Objective Perspective: MLM->Masked Image Modeling

Vision-Language Joint Modeling:
VLBERT, VisualBERT, CLIP, ALIGN

Big question: Can vision or visual knowledge help language?



Big Convergence of Vision and Language



Simple Questions Which Requires Visual Knowledge

What is the color of the sky?

Is sofa larger than a cat?

What is the shape of an apple?



Visually-Augmented Language Modeling

Motivation:
• Demonstrate that vision can also help language modeling
• Propose a novel area of Vision for NLP

Prerequisite:
• CLIP provides a good mapping between a sentence and an image
• LAION is constructed with 400M image-text pairs
• GPU-enabled Dense Retrieval with Inner Product Scoring is available
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VaLM Architecture
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Training Objective
Training Objective: Causal Language Modeling
Maximize the likelihood on the text corpus:
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Text-Image Retriever
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Revisit: the text input length to CLIP text encoder is 75

Image Knowledge Base Creation: 
Input each image in LAION to get a E-dim image encoding, Now we have 
200M * IMG-E dimensional KB vector

Textual Query: 
In order to map each token to K images, truncate the sentence with sliding 
window

Nearest Neighbor Retrieval:
Retrieve the top-k images in KB given the token encoding query w.r.t. IP score 



Visual Knowledge Fusion Layer
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Training and Evaluation Details
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Pre-trained Text corpus: CC-100, 400GB raw text

Image Data: LAION, half, 200M

Model Architecture: GPT2 Base, 117M

Evaluation Tasks:
• Visual- knowledge intensive tasks:

• Natural Language Processing Tasks



Results on Visual-Knowledge Intensive Tasks
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Results on NLP tasks
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Transferring from NLU to NLG, which is more complicated.

Fully zero-shto evaluation, without any task-specific fine-tuning.

Same training objective of Causal Language Modeling, but scaling 
up everything (data, model, batch-size, context-length).

Achived SOTA on most of NLG dataset compared with tuned model.



Retrieval Cost
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Case Study
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Case Study
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